skip to main content


Search for: All records

Creators/Authors contains: "Kopp, Robert E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Low elevation equatorial and tropical coastal regions are highly vulnerable to sea level rise. Here we provide probability perspectives of future sea level for Singapore using regional geological reconstructions and instrumental records since the last glacial maximum ~21.5 thousand years ago. We quantify magnitudes and rates of sea-level change showing deglacial sea level rose from ~121 m below present level and increased at averaged rates up to ~15 mm/yr, which reduced the paleogeographic landscape by ~2.3 million km 2 . Projections under a moderate emissions scenario show sea level rising 0.95 m at a rate of 7.3 mm/yr by 2150 which has only been exceeded (at least 99% probability) during rapid ice mass loss events ~14.5 and ~9 thousand years ago. Projections under a high emissions scenario incorporating low confidence ice-sheet processes, however, have no precedent during the last deglaciation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Small Island Developing States (SIDS) have long been recognized as some of the planet’s most vulnerable areas to climate change, notably to rising sea levels and coastal extremes. They have been crucial in raising ambitions to keep global warming below 1.5 °C and in advancing the difficult debate on loss and damage. Still, quantitative estimates of loss and damage for SIDS under different mitigation targets are lacking. Here we carry out an assessment of future flood risk from slow-onset sea-level rise and episodic sea-level extremes along the coastlines of SIDS worldwide. We show that by the end of this century, without adaptation, climate change would amplify present direct economic damages from coastal flooding by more than 14 times under high-emissions scenarios. Keeping global warming below 1.5 °C could avoid almost half of unmitigated damage, depending on the region. Achieving this climate target, however, would still not prevent several SIDS from suffering economic losses that correspond to considerable shares of their GDP, probably leading to forced migration from low-lying coastal zones. Our results underline that investments in adaptation and sustainable development in SIDS are urgently needed, as well as dedicated support to assisting developing countries in responding to loss and damage due to climate change. 
    more » « less
    Free, publicly-accessible full text available October 9, 2024
  3. Future sea-level rise projections are characterized by both quantifiable uncertainty and unquantifiable structural uncertainty. Thorough scientific assessment of sea-level rise projections requires analysis of both dimensions of uncertainty. Probabilistic sea-level rise projections evaluate the quantifiable dimension of uncertainty; comparison of alternative probabilistic methods provides an indication of structural uncertainty. Here we describe the Framework for Assessing Changes To Sea-level (FACTS), a modular platform for characterizing different probability distributions for the drivers of sea-level change and their consequences for global mean, regional, and extreme sea-level change. We demonstrate its application by generating seven alternative probability distributions under multiple emissions scenarios for both future global mean sea-level change and future relative and extreme sea-level change at New York City. These distributions, closely aligned with those presented in the Intergovernmental Panel on Climate Change Sixth Assessment Report, emphasize the role of the Antarctic and Greenland ice sheets as drivers of structural uncertainty in sea-level change projections.

     
    more » « less
    Free, publicly-accessible full text available December 21, 2024
  4. Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).

     
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  5. Abstract Several coastal ecosystems—most notably mangroves and tidal marshes—exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment 1 . The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs 2 . The persistence of these ecosystems under high rates of RSLR is contested 3 . Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr −1 and highly likely at 7 mm yr −1 of RSLR. As rates of RSLR exceed 7 mm yr −1 , the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr −1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world’s mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr −1 . Meeting the Paris agreement targets would minimize disruption to coastal ecosystems. 
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  6. Future sea-level change is characterized by both quantifiable and unquantifiable uncertainties. Effective communication of both types of uncertainty is a key challenge in translating sea-level science to inform long-term coastal planning. Scientific assessments play a key role in the translation process and have taken diverse approaches to communicating sea-level projection uncertainty. Here we review how past IPCC and regional assessments have presented sea-level projection uncertainty, how IPCC presentations have been interpreted by regional assessments and how regional assessments and policy guidance simplify projections for practical use. This information influenced the IPCC Sixth Assessment Report presentation of quantifiable and unquantifiable uncertainty, with the goal of preserving both elements as projections are adapted for regional application. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  7. The framework of Representative Key Risks (RKRs) has been adopted by the Intergovernmental Panel on Climate Change Working Group II (WGII) to categorize, assess and communicate a wide range of regional and sectoral key risks from climate change. These are risks expected to become severe due to the potentially detrimental convergence of changing climate conditions with the exposure and vulnerability of human and natural systems. Other papers in this special issue treat each of eight RKRs holistically by assessing their current status and future evolution as a result of this convergence. However, in these papers, such assessment cannot always be organized according to a systematic gradation of climatic changes. Often the big-picture evolution of risk has to be extrapolated from either qualitative effects of “low”, “medium” and “high” warming, or limited/focused analysis of the consequences of particular mitigation choices (e.g., benefits of limiting warming to 1.5 or 2C), together with consideration of the socio-economic context and possible adaptation choices. In this study we offer a representation – as systematic as possible given current literature and assessments – of the future evolution of the hazard components of RKRs. We identify the relevant hazards for each RKR, based upon the WGII authors’ assessment, and we report on their current state and expected future changes in magnitude, intensity and/or frequency, linking these changes to Global Warming Levels (GWLs) to the extent possible. We draw on the assessment of changes in climatic impact-drivers relevant to RKRs described in the 6th Assessment Report by Working Group I supplemented when needed by more recent literature. For some of these quantities - like regional trends in oceanic and atmospheric temperature and precipitation, some heat and precipitation extremes, permafrost thaw and Northern Hemisphere snow cover - a strong and quantitative relationship with increasing GWLs has been identified. For others - like frequency and intensity of tropical cyclones and extra-tropical storms, and fire weather - that link can only be described qualitatively. For some processes - like the behavior of ice sheets, or changes in circulation dynamics - large uncertainties about the effects of different GWLs remain, and for a few others - like ocean pH and air pollution - the composition of the scenario of anthropogenic emissions is most relevant, rather than the warming reached. In almost all cases, however, the basic message remains that every small increment in CO2 concentration in the atmosphere and associated warming will bring changes in climate phenomena that will contribute to increasing risk of impacts on human and natural systems, in the absence of compensating changes in these systems’ exposure and vulnerability, and in the absence of effective adaptation. Our picture of the evolution of RKR-relevant climatic impact-drivers complements and enriches the treatment of RKRs in the other papers in at least two ways: by filling in their often only cursory or limited representation of the physical climate aspects driving impacts, and by providing a fuller representation of their future potential evolution, an important component – if never the only one – of the future evolution of risk severity. 
    more » « less